

NOTES UNIT 2.2

STEP FUNCTIONS	
Ceiling Function/Least Integer Function	Functions where for any input x , the output is the smallest integer greater than or equal to x .
Discontinuous Function	A function that does that across a specified domain.
Floor Function/ Greatest Integer Function	Functions where for any input x, the output is the largest integer less than or equal to x.
Interval	A set of values between a lower bound and an upper bound.
Step Function/Stair Function	A function that is a series of disconnected constant functions

• The following graph displays a floor function, $y = \lfloor x \rfloor$.

y=L-2.4]=-3 Domain: Allreal #'s Range: integers

Adding a constant to a floor function causes its graph to shift up or down depending on the sign
of the function. For instance, for f(x) ⇒ [x] + c, adding c would shift the steps in the graph up
by c units, while the steps in the graph of f(x) = [x] − c would be shifted down by c units.

The following graph displays a ceiling function_ω y = [x].

$$y = [2.67 = 3]$$
 $y = [-3.67 = -3]$

Domain: Allreal #3 Range: integers

Example 1:

Consider the least integer (ceiling) function, $g(x) = \lceil x \rceil$. How does the value g(x) change as x changes from 1.5 to 3.8? Graph the function to show the change.

Evaluate g(x) at x=1.5

$$g(x) = [1.57 = 2]$$

2. Evaluate g(x) at x=3.8

3. Determine how the value of g(x) changes as x changes from 1.5 to 3.8

4. Graph the function g(x) to show this change.

Example 2:

Consider the function f(x) = 3[x]. Graph f(x) and identify the domain and any points of discontinuity

Identify any points of discontinuity for f(x).

$$f(x) = 3(1)$$

$$f(x)=377.67=3(2)$$

= 6
Pange: integers that are
Multiples of 3