Math 3 Warm-up

State if the given functions are inverses.

State if the given functions are inverses.

1)
$$g(x) = 4 - \frac{3}{2}x$$

2) $g(n) = \frac{-12 - 2n}{3}$

$$f(x) = \frac{1}{2}x + \frac{3}{2}$$

2) $g(n) = \frac{-12 - 2n}{3}$

$$f(n) = \frac{-5 + 6n}{5}$$

$$f(n) = \frac{-5 + 6n}$$

1.5 – Logarithmic Functions and **Inverses**

What is a logarithm?

A logarithm is the power to which a number must be raised in order

to the power of two is 100:

$$100 = 10^2$$
 because $log_{10}100 = 2$

UP, DOWN, UP

If $y = b^x$, then

If $7 = 3^x$, then

$$log_3 7 = X$$

If $\log_b y = x$ then

If $\log_4 64 = 3$ then

$$41^{3} = 64$$

Remember: If $y = b^x$ then $log_b y = x$

If $25 = 5^2$ then

If $729 = 3^6$ then

If $1 = 10^{0}$ then

If $\left(\frac{1}{2}\right)^3 = \frac{1}{8}$ then

$$\log_{\frac{1}{2}} \xi = 3$$

Let's pause for a second . . .

- ■If $y = b^x$ then $log_b y = x$
- x in the exponential expression b^x is the logarithm in the equation $logb_y=x$
- •The base b in bx is the same as the base b in the logarithm

NOTE: b does not =1 and must be greater than 0 The logarithm of a negative number or zero is undefined.

Common Logs

■A common log is a logarithm that uses base 10. You can write the common logarithm log₁₀y as log y

Evaluating Logarithms

Ex: Evaluate log₈16

Log₈16=x

$$16 = 8^{x}$$

$$2^4 = (2^3)^x$$

$$2^4 = 2^{3x}$$

$$4 = 3x$$

$$x = 4/3$$

Write an equation in log form Convert to exponential form

Rewrite using the same base. In this

case, base of 2

Power of exponents

Set the exponents equal to each other

Solve for x

Therefore, Log₈16=4/3

Ex: Evaluate
$$\log_{64} \frac{1}{32}$$

$$\log_{64} \frac{1}{32} = x$$
 Write an equation $\frac{1}{32}$

$$\frac{1}{32} = 64^x$$

 $\frac{1}{32} = 64^x$ Convert to exponential form

$$\frac{1}{2^5} = 2^{6x} \longrightarrow 2^{-5} = 2^{6x}$$

 $\frac{1}{2^5} = 2^{6x}$ Rewrite using the same base. In this case, base of 2. Use negative expos!

$$-5 = 6x$$

x=-5/6

Set the exponents equal to each other Solve for x

Therefore,
$$\log_{64} \frac{1}{32} = -\frac{5}{6}$$

Let's try some

Evaluate the following:

log₉ 27

 $\log_{10} 100$

logg27=1.5 x=39x=27 32x=33 20=3 log,,100=2 10x=100

Graphs of Logarithmic Functions

■ A logarithmic function is the inverse of an exponential function

In other words, y= 10^x and y=log₁₀x are inverses of each other. Where is the line of reflection?

Let's try a more complicated one Find the inverse of y=log₅(x-1)+2

 $y = \log_5(x - 1) + 2$

Start with the original function

 $x = \log_5(y - 1) + 2$

Switch the x and y

 $x-2 = \log_{5}(y-1)$

Subtract 2 from both sides

■y-1=5^(x-2)

Rewrite in y=ab^x form

 $y=5^{(x-2)}+1$

Add 1 to both sides

The inverse of $y = \log_5(x-1) + 2$ is $y = 5^{(x-2)} + 1$

Let's try some

Find the inverse of each function:

Y=log_{0.5}x X=log₅y

= ,5 × $y = \log_5 x^2$ $X = \log_5 y^2$ $y = \sqrt{5}$ $y = \sqrt{5}$

Hint: what is the base? $X = log_{10}(y-2)$ 4-2 = 10 +2 +2 4 = 10

y = log(x-2)

Extra Practice: -Find the Inverses	
$1.)y = \log(-2x)$	$2.)y = \log_{\frac{1}{4}}x^5$
$3.)y = \log_{\frac{1}{5}}(x-4)$	$4.)y = \log_3(4x - 4)$
$5.)y = \log_2(3x^3)$	$6.) y = -7\log_6(-3x)$