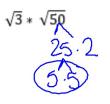
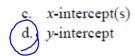
Warm-Up Take out your homework



Simplify the following expressions:



What characteristic of a parabola can be most easily identified when the standard form of a quadratic is given?

- a. extremum
- b. vertex

Agenda:

- 1) Operations (+/-) with RADicals!!! Notes.
- 2) Practice in Pairs
- 3) Individual Art Project
- 4) Exit Ticket

Rules and Properties: Square Root Expressions in Simplest Form

An expression involving square roots is in simplest form if

- 1. There are no perfect-square factors in a radical.
- 2. No fraction appears inside a radical.
- 3. No radical appears in the denominator.

Radicals Add/Sub and Mult.

There are three important rules when adding and subtracting radicals.

Rule #1 - When adding or subtracting two radicals, you must simplify the radicands first.

What is the radicand of: $3\sqrt{5}$

Look at $\sqrt{180} + 7\sqrt{20}$.

What do you notice about the expression?

Let's Take: $\sqrt{180} + 7\sqrt{20}$

In order to add these radicals, you must simplify each radical if it can be simplified.

Simplify $\sqrt{180}$: 2

23(5)

Then simplify $7\sqrt{20}$

7.255 = [40

Rewrite the expression as simplified radicals:

65 + 145

Rule #2 - In order to add or subtract two radicals, they must have the same radicand.

This is similar to saying that the two radicals must be "like terms".

$$\sqrt{180} + 7\sqrt{20} = \sqrt{65} + 14\sqrt{5}$$

Do they have the same radicand?

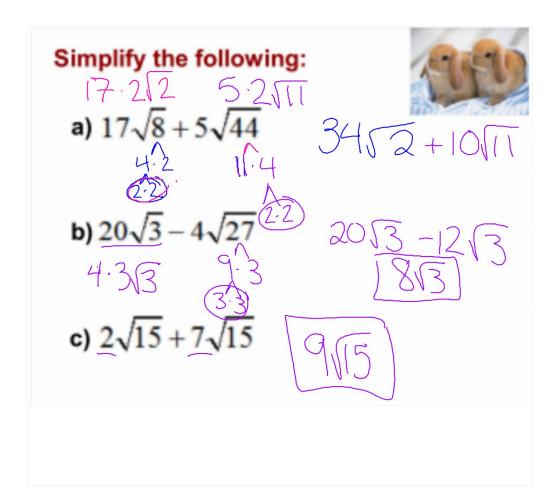
If they do, then simply add the coefficients and leave the radical.

If there are no common radicands, then it is simplified.

Can these radicals be added/subtracted?

$$3\sqrt{2} + 2\sqrt{3} = \infty$$

 $4\sqrt{5} - \sqrt{5} = 3\sqrt{5}$
 $22\sqrt{7} - 22\sqrt{6} \approx 0$


$$10\sqrt{11} + 24\sqrt{11} = 34\%$$

Rule #3: When adding or subtracting, you only add the coefficients. The radicands stay the same.

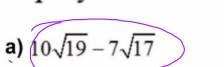
$$4\sqrt{7} + 10\sqrt{7} = (4+10)\sqrt{7} = 14\sqrt{7}$$

Notice: The radicand stays 7!

le #1 - When adding or subtracting two radicals, you must simplify the radicands first.

le #2 - In order to add or subtract two radicals, they must have the same radicand.

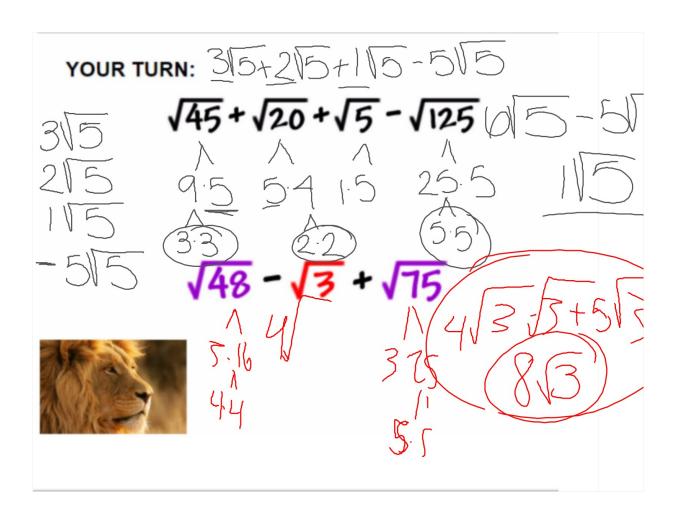
<u>le #3</u> - When adding or subtracting two radicals, <u>you only add the coefficients</u>. <u>The radicand remains the same</u>.

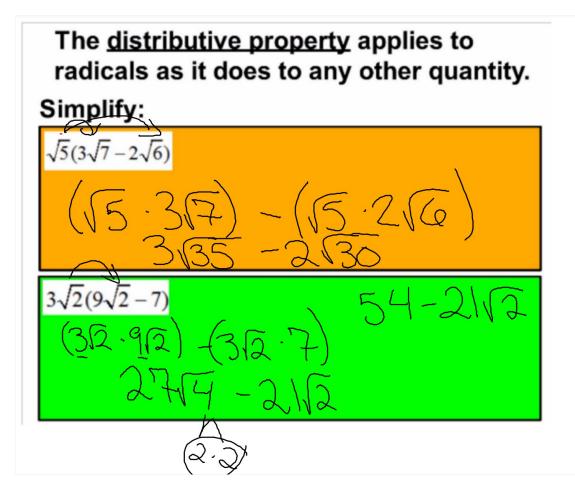


::

+

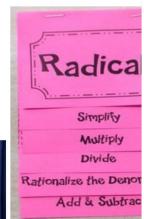
_


Simplify.



b)
$$8\sqrt{7} - 12\sqrt{7} = -4\sqrt{7}$$

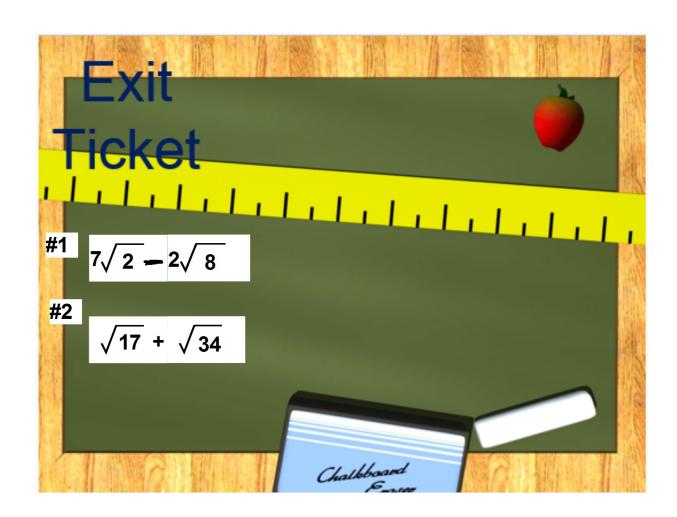
c)
$$3\sqrt{6} + 5\sqrt{24}$$
 3 (6) + 10 (6)
5. 2 (6) 4 13 (6)


$$(4+\sqrt{2})(5+\sqrt{3})$$

$$(2-\sqrt{5})(3\sqrt{3}-\sqrt{10})$$

Art Project

Listen for directions!


Pair Practice

- One riddle sheet for you and your partner.
- Solution on the sheet, work on other paper.
 - Attempt the problem individually (in your own notebook!).
 - **■** Compare work.
 - Check each other's work at the end.

Expectations:

- 1. Talking volume < Music volume
- 2. 30 minutes
- 3. Turn it in once finished.

