

APPLICATION: Helen drops a ball from 25 feet above a lake. The formula $t = \frac{1}{4}\sqrt{25-h}$ describes the t time in seconds that the ball is h feet above the water.

- A) How long is the ball in the air when the ball is at 16 feet?
- B) How many feet above the water will the ball be after 1 second?

INVERSE VARIATION

October 6th, 2017

Inverse Variation notes!

While direct variation describes a linear relationship between two variables, inverse variation describes another kind of relationship.

For two quantities with inverse variation, as one quantity increases, the other quantity decreases.

Inverse Variation notes!

An inverse variation can be represented by the equation xy=k or $y=rac{k}{x}$.

That is, y varies inversely as x if there is some nonzero constant k such that, xy=k or $y=rac{k}{x}$ where x
eq 0,y

What are some examples of inverse variation found in the real world?

2. If a train travels between two cities in 3 hours at an average speed of 65 miles per hour, how long would it take at an average speed of 80 miles per hour?

3. A certain project can be completed by 5 workers in 24 days. In order to finish the project sooner, the company plans to hire additional workers. How many workers are needed to finish the project in 15 days?

$$\begin{array}{ccc}
X_{1} = 5 & y_{1} = 24 \\
(5)(24) = y_{2} = 15 \\
120 = 15x_{2} \\
15
\end{array}$$

Does the table below represent an inverse relationship? How do you know?

		000 10
x	y	no, because both
5	15	X-values and
6	18	(1 1/3/1)
7	21	y-values are
8	24	e MCreasing

PROBLEM 1: IF Y VARIES INVERSELY

AS X AND X=3 WHEN Y=9, THEN

WHAT IS X WHEN Y=27?

$$X_1 = 3$$
 $y_1 = 9$ $(3)(9) = x_2(2)$
 $X_2 = 7$ $y_2 = 27$ $(3)(9) = x_2(2)$
 $X_2 = 7$ $y_2 = 27$ $(3)(9) = x_2(2)$

#2. If y varies inversely to x according to the formula
$$y = \frac{4}{\sqrt{x}}$$
, find y when $x = \frac{4}{\sqrt{x}}$

5. y varies inversely with x. If
$$y = 40$$
 when $x = 16$, find x when $y = -5$. $x = 16$

What is the value of k (constant of variation)

Solve for x b.

$$-\frac{5(x_2)}{-5} = (640) \times = -128$$

6. y varies inversely with x. If y = 7 when x = -4, find y when x = 5

$$(-4)(7+)=-78^{2}=5$$
 $y_2=?$

Independent Practice

1. Go to Google Classroom and click on Independent Practice

- Chromebooks.
- Click on the first link first. START from #19.
- 25 min.
- Partner work
- Talking volume < Music volume
- 2. Click on the second link after #1
- Partner work
- 30 min.
- Talking volume < Music volume