Math III 3=b 2=-b

at is the solution to the equation |3 - x| = 9?

A.
$$-4 \le x < 2$$

A.
$$-4 \le x < 2$$
 B. $-4 < x \ge 2$ C. $-4 < x < 2$ D. $-4 < x < 2$

C.
$$-4 < x < 2$$

hat is the equation of the system that would give the graph shown?

$$y \le -2x + 2$$

$$y \ge (x - 2)^2 - 4$$

B.
$$y \le -2x + 2$$

 $y \le (x-2)^2 - 4$

$$y \ge -2x + 2$$
$$y \ge (x - 2)^2 - 4$$

$$y \le -2x + 2 y \ge (x - 2)^2 - 4$$
B. $y \le -2x + 2 y \le (x - 2)^2 - 4$

$$y \ge -2x + 2 y \ge (x - 2)^2 - 4$$
D. $y \ge 2x - 2 y \le (x - 2)^2 - 4$

2.5 - Combinations of Functions: Composite Functions

Objectives

- Add, subtract, multiply, and divide functions.
- Find the composition of one function with another function.
- Use combinations and compositions of functions to model and solve real-life problems.

Arithmetic Combinations of Functions

Sum, Difference, Product, and Quotient of Functions

Let f and g be two functions with overlapping domains. Then, for all x common to both domains, the *sum*, *difference*, *product*, and *quotient* of f and g are defined as follows.

1. Sum:
$$(f+g)(x) = f(x) + g(x)$$

2. Difference
$$(f-g)(x) = f(x) - g(x)$$

3. Product:
$$(fg)(x) = f(x) \cdot g(x)$$

4. Quotient:
$$g(x) = \frac{f(x)}{g(x)}$$
, $g(x) \neq 0$

Evaluating Arithmetic Combinations of Functions

EXAMPLE

$$f(x) = x^2 - 1 \quad \text{and} \qquad g(x) = x + 4$$

Find
$$f(2) + g(2)$$

a)
$$(f+g)(2)$$

$$\begin{array}{c} f(0) \cdot g(0) \\ 0^{2} - 1 \cdot (0 + 1) = (-1)^{2} \cdot (0 + 1) \\ - e \cdot (f_{2}(0) + f(0) + f(0) + 1) = (-1)^{2} \cdot (0 + 1) \\ \end{array}$$

$$-4 + (6-1)$$
 $-4+(36-1)$

b)
$$(f-g)(-3)$$

$$(3^{2}-1)-(-3+4)$$
 $(9-1)-(1)=7$

$$\frac{d}{g} \left(\frac{f}{g}\right) \left(7\right) = \frac{7^2 - 1}{7^2}$$

Composition of Functions

Another way of combining two functions is to form the composition of one with the other.

For instance, if $f(x) = x^2$ and g(x) = x + 1, the composition of f with g is

$$f(g(x)) = f(x+1)$$

$$= (x+1)^2.$$

This composition is denoted as $f \cdot g$ and reads as "f composed with g."

Definition of Composition of Two Functions

The **composition** of the function f with the function g is

$$(f \circ g)(x) = f(g(x)).$$

The domain of $f \circ g$ is the set of all x in the domain of g such that g(x) is in the domain of f. (See Figure 2.36.)

Application
where \underline{T} is the temperature of the food in degrees Celsius. When the food is removed from refrigeration, the temperature of the food is given by $20\left(10t^2+10t+44\right)$ $\underline{T}(t)=4t+2, \qquad 0 \le t \le 3 \qquad -8004+42 + 500$
where \underline{t} is the time in hours. 320£ +320£ +80 a. Find the composition (N • 7)(t) and interpret its meaning
$N(T(t)) = N(4t+2) = 20(4t+2)^2 - 80(4t+2) + 500$ b. Find the time when the bacteria count reaches 2000.
320t ² + 420

The suggested retail price of a new hybrid car is p dollars. The dealership advertises a factory rebate of \$2000 and a 10% discount.

- a) Write a function *R* in terms of *p* giving the cost of the hybrid car after receiving the rebate from the factory.
- b) Write a function S in terms of p giving the cost of the hybrid car after receiving the dealership discount.
- c) Form the composite functions $(R \circ S)(p)$ and $(S \circ R)(p)$ and interpret each.
- d) Find $(R \circ S)(25,795)$ and $(S \circ R)(25,795)$. Which yields the lower cost for the hybrid car?