Identify the base in $4^{3}$. What information does it give you?

Identify the exponent in $4^{3}$. What information does it give you?
Understand Explain how $2^{3}$ different from $2 \cdot 3$ ?

Analyze and Create: Write the Problem expression in E•X•p•a•n•d•e•d F•o•r•m, then simplify the expression by writing the correct ExponentialForm. At the bottom of each section, write a rule explaining to other people how to simply expressions with many exponents.

| Multiplying Numbers with Exponents |  |  |
| :---: | :---: | :---: |
| Problem | E*x•p•a•n•d•e•d F*o•r•m | Exponential ${ }^{\text {Form }}$ |
| 1. $2^{2} \cdot 2^{3}$ | $\underline{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}$ |  |
| 2. $3^{4} \cdot 3^{2}$ |  |  |
| 3. $4^{2} \cdot 4^{5}$ |  |  |
| 4. $5^{2} \cdot 5^{4} \cdot 5^{3}$ |  |  |
| 5. $\left(10^{3}\right)(10)$ |  |  |
| 6. $\left(10^{5}\right)\left(10^{3}\right)\left(10^{2}\right)$ |  |  |
| 7. $\left(x^{2}\right)\left(x^{3}\right)$ |  |  |
| 8. $\left(p^{4}\right)\left(p^{5}\right)(p)$ |  |  |
| Look at the original exponents in the Problem and the exponents in the ExponentialForm . Write the rule for multiplying numbers with integer exponents: |  |  |


| Exponents Raised to an Exponent (a.k.a. Power to a Power) |  |  |
| :---: | :---: | :---: |
| Problem | E*x•p•a•n•d•e•d F*o•r•m | ExponentialForm |
| 1. $\left(2^{3}\right)^{2}$ | $2^{3} \cdot 2^{3}=\underline{2 \cdot 2 \cdot 2} \underline{2 \cdot 2 \cdot 2}$ |  |
| 2. $\left(2^{2}\right)^{3}$ |  |  |
| 3. $\left(2^{2}\right)^{4}$ |  |  |
| 4. $\left(2^{3}\right)^{3}$ |  |  |
| 5. $\left(2^{2}\right)^{4}$ |  |  |
| 6. $\left(a^{5}\right)^{2}$ |  |  |
| 7. $\left(w^{5}\right)^{3}$ |  |  |
| 8. $\left(\mathrm{g}^{5}\right)^{3}$ |  |  |
| Look at the origi Exponential ${ }^{\text {Fo }}$ | ents in the Problem and the expo the rule for an exponent raised to | ts in the exponent: |


| Dividing Numbers with Exponents |  |  |
| :---: | :---: | :---: |
| Problem | E*x•p•a•n•d•e•d F*o•r•m | Exponential ${ }^{\text {Form }}$ |
| 1. $2^{5} \div 2^{2}=\frac{2^{5}}{2^{2}}$ | $\frac{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}{2 \cdot 2}$ |  |
| 2. $4^{6} \div 4^{2}=\frac{4^{6}}{4^{2}}$ |  |  |
| 3. $5^{6} \div 5^{2}=\frac{5^{6}}{5^{2}}$ |  |  |
| 4. $3^{5} \div 3^{3}=\frac{3^{5}}{3^{3}}$ |  |  |
| 5. $10^{7} \div 10^{4}=\frac{10^{7}}{10^{4}}$ |  |  |
| 6. $\mathrm{r}^{4} \div \mathrm{r}^{2}=\frac{\mathrm{r}^{4}}{\mathrm{r}^{2}}$ |  |  |
| 7. $\mathrm{s}^{7} \div \mathrm{s}^{3}=\frac{\mathrm{s}^{7}}{\mathrm{~s}^{3}}$ |  |  |
| 8. $\mathrm{m}^{10} \div \mathrm{m}^{3}=\frac{\mathrm{m}^{10}}{\mathrm{~m}^{3}}$ |  |  |
| Look at the original ex Exponential ${ }^{\text {Form }}$ | ts in the Problem and the expo he rule for dividing numbers with | s in the eger exponents: |

## Create and Evaluate

## Rewrite your rule for multiplying numbers with exponents.

Which rule is the same as your rule?
A. $x^{a} \cdot x^{b}=x^{a+b}$
B. $\frac{x^{a}}{x^{b}}=x^{a-b}$
C. $\left(x^{a}\right)^{b}=x^{a \cdot b}$

## Rewrite your rule for a power raised to a

 power.Which rule is the same as your rule?
A. $\frac{x^{a}}{x^{b}}=x^{a-b}$
B. $\left(x^{a}\right)^{b}=x^{a \cdot b}$
C. $x^{a} \cdot x^{b}=x^{a+b}$

Rewrite your rule for dividing numbers with exponents.

Which rule is the same as your rule?
A. $x^{a} \cdot x^{b}=x^{a+b}$
B. $\left(x^{a}\right)^{b}=x^{a \cdot b}$
C. $\frac{x^{a}}{x^{b}}=x^{a-b}$

