Exponent Rules Pattern Investigation

(name / date / period)

Remember

Identify the base in 43. What information does it give you?

Identify the exponent in 43. What information does it give you?

Understand

Explain how 2^3 different from $2 \bullet 3$?

Analyze and Create: Write the **Problem** expression in **E**•**x**•**p**•**a**•**n**•**d**•**e**•**d F**•**o**•**r**•**m**, then simplify the expression by writing the correct **Exponential**^{Form}. At the bottom of each section, write a rule explaining to other people how to simply expressions with many exponents.

Multiplying Numbers with Exponents			
Problem	E•x•p•a•n•d•e•d F•o•r•m	Exponential Form	
1. 2 ² • 2 ³	<u>2 • 2</u> • <u>2 • 2 • 2</u>		
2. 3 ⁴ • 3 ²			
3. 4 ² • 4 ⁵			
4. 5 ² • 5 ⁴ • 5 ³			
5. (10 ³)(10)			
6. $(10^5)(10^3)(10^2)$			
7. $(x^2)(x^3)$			
8. (p ⁴)(p ⁵)(p)			

Look at the original exponents in the **Problem** and the exponents in the **Exponential** Form . Write the rule for multiplying numbers with integer exponents:

Exponents Raised to an Exponent (a.k.a. Power to a Power)			
Problem	E•x•p•a•n•d•e•d F•o•r•m	Exponential Form	
1. (2 ³) ²	$2^3 \bullet 2^3 = 2 \bullet 2 \bullet 2 \bullet 2 \bullet 2 \bullet 2$		
2. $(2^2)^3$			
3. (2 ²) ⁴			
4. (23)3			
5. (2 ²) ⁴			
6. (a ⁵) ²			
7. (w ⁵) ³			
8. (g ⁵) ³			

Look at the original exponents in the **Problem** and the exponents in the **Exponential** Form. Write the rule for an exponent raised to an exponent:

Dividing Numbers with Exponents			
Problem	E•x•p•a•n•d•e•d F•o•r•m	Exponential Form	
1. $2^5 \div 2^2 = \frac{2^5}{2^2}$	$\frac{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}{2 \cdot 2}$		
$2. 4^6 \div 4^2 = \frac{4^6}{4^2}$			
3. $5^6 \div 5^2 = \frac{5^6}{5^2}$			
4. $3^5 \div 3^3 = \frac{3^5}{3^3}$			
5. $10^7 \div 10^4 = \frac{10^7}{10^4}$			
6. $r^4 \div r^2 = \frac{r^4}{r^2}$			
7. $s^7 \div s^3 = \frac{s^7}{s^3}$			
8. $m^{10} \div m^3 = \frac{m^{10}}{m^3}$			

Look at the original exponents in the **Problem** and the exponents in the **Exponential** *Form* . *Write the rule for dividing numbers with integer exponents:*

Create and Evaluate

Rewrite your rule for multiplying numbers with exponents.

Which rule is the same as your rule?

A.
$$x^a \cdot x^b = x^{a+b}$$

A.
$$x^a \cdot x^b = x^{a+b}$$

B. $\frac{x^a}{x^b} = x^{a-b}$
C. $(x^a)^b = x^{a \cdot b}$

C.
$$(x^a)^b = x^{a \cdot b}$$

Rewrite your rule for a power raised to a power.

Which rule is the same as your rule?

A.
$$\frac{x^a}{x^b} = x^{a-b}$$
B.
$$(x^a)^b = x^{a \cdot b}$$
C.
$$x^a \cdot x^b = x^{a+b}$$

B.
$$(x^a)^b = x^{a \cdot b}$$

C.
$$x^a \cdot x^b = x^{a+1}$$

Rewrite your rule for dividing numbers with exponents.

Which rule is the same as your rule?

A.
$$x^a \cdot x^b = x^{a+b}$$

3.
$$(x^a)^b = x^{a \cdot b}$$

A.
$$x^{a} \cdot x^{b} = x^{a+b}$$

B. $(x^{a})^{b} = x^{a \cdot b}$
C. $\frac{x^{a}}{x^{b}} = x^{a-b}$