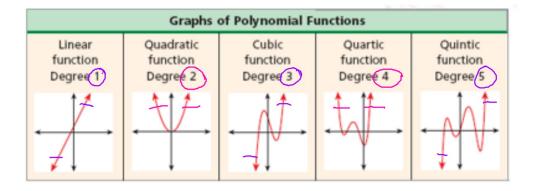

Math 3 Get out your homework Simplify the expression


8)
$$(3x^4 - 3x) + (3x + 3x^4)$$

$$(0) \times (3x^4 - 3x) + (3x + 3x^4)$$

10)
$$(3-6n^{5'}-8n^{4})+(+6n^{4}+3n+8n^{5})$$

 $2n^{5}-2n^{4}+3n^{4}$

P(x)=4x3+3x2+5x-2

Polynomial functions are classified by their degree. The graphs of polynomial functions are classified by the degree of the polynomial. Each graph, based on the degree, has a distinctive shape and characteristics.

End behavior is a description of the values of the function as x approaches infinity $(x \rightarrow +\infty)$ or negative infinity $(x \rightarrow -\infty)$. The degree and leading coefficient of a polynomial function determine its end behavior. It is helpful when you are graphing a polynomial function to know about the end behavior of the function.

Investigating Graphs of Polynomial Functions

Polynomial End Behavior		
<i>P</i> (<i>x</i>) has	Odd Degree	, Even Degree
Leading	As $x \to +\infty$,	As $x \to -\infty$,
coefficient	$P(x) \to +\infty$	$P(x) \to +\infty$
positive		
	$As x \to -\infty, P(x) \to -\infty$	As $x \to +\infty$, $P(x) \to +\infty$
Leading coefficient	As $x \to -\infty$,	As $x \to -\infty$,
regetil	$P(x) \to +\infty$ $As \ x \to +\infty,$ $P(x) \to -\infty$	$P(x) \to -\infty$ $As \ x \to +\infty,$ $P(x) \to -\infty$

Example 1: Determining End Behavior of Polynom Functions

Identify the leading coefficient, degree, and end behavior.

A.
$$Q(x) = -x^4 + 6x^3 - x + 9$$

leading coefficient: -1
degree: 4
 $25 \times -3 - \infty$, $Q(x) -3 - \infty$
 $25 \times -3 - \infty$, $Q(x) -3 - \infty$

Complete the table to identify the leading coefficient, degree, and end behavior of each polynomial function.

Leading Coefficient **Polynomial** Degree **End Behavior** $P(x) = x^2 + 3x + 6$ 1. As $x \to -\infty$, $P(x) \xrightarrow{} +\infty$ As $x \to +\infty$, $P(x) \to +\infty$ As $x \to -\infty$, $P(x) \to \frac{1}{2}$ $P(x) = -3x^3 + 2x - 5$ 2. As $x \to +\infty$, $P(x) \to \underline{-\infty}$ 3. $P(x) = 2x^4 + 2x^3 + 3$ $P(x) = -6x^5 + 3x^3 + 1$ 4.