Warm-up

Work on your Warm-up Take out your homework.

Factor each expressions below completely:

#1.
$$2x^2 + 5x + 3$$

#2.
$$3x^2 + 15x + 12$$

Agenda:

- 1)Complex Numbers! Notes
- 2) Group work.

Prior knowledge - Different Number Systems...

1.NATURAL NUMBERS (N)

2.INTEGERS (Z)

3.RATIONAL NUMBERS (Q)

N = 1,2,3,4,... are positive whole numbers.

Z = ...-3,-2,-1, 0, 1, 2, 3,...are positive and negative whole numbers.

IRRATIONAL NUMBERS

These are numbers that cannot be written in the form a/b where $a, b, \in Z$ and $b \ne 0$. Irrational numbers are non terminating, non repeating decimals such as $\sqrt{2}$, $\sqrt{3}$, $\sqrt[3]{4}$, π , e. Pythagoras came across the existence of these numbers around 500 BC.

$$c^2 = a^2 + b^2$$

$$c^2 = 1^2 + 1^2$$

$$c^2 = 2$$

$$c = \sqrt{2}$$

These are numbers that can be written in the form a/b (fraction) where a, $b \in Z$ and b $\neq 0$.

Q =...-4.6, -4, -3.5, -2.07, -1, 0, 0.82,...

Q = ... -46/10, -4/1, -7/2, -207/100, -1/1, 0/1, 82/100...

All repeating decimals can be written as rational numbers:

 $0.\dot{3} = 0.333... = \frac{1}{3}$

0.16 = 0.1666... = 1/6

 $0.\dot{1}4285\dot{7} = 0.142857142857... = \frac{1}{7}$

4.REAL NUMBERS (R)

This is the number system we get when we put all the Rational Numbers together with all the Irrational Numbers. The Rationals and Irrationals form a continuum (no gaps) of Real Numbers provided that the Real Numbers have a one to one correspondence with points on the Number Line.

Introduction

We know that the square root of -1, or $\sqrt{-1}$, is not a real number because there is no number that when squared will result in -1. French mathematician René Descartes suggested the imaginary unit i be defined so that $i^2 = -1$. The imaginary unit enables us to solve problems that we would not otherwise be able to solve. Problems involving electricity often use the imaginary unit.

"I THINK,
THEREFORE
I AM"
RENE DESCARTES

Let's define the "i"

- The **imaginary unit** *i* is used to represent the non-real value, $\sqrt{-1}$.
- An **imaginary number** is any number of the form bi, where b is a non-zero real number and $i = \sqrt{-1}$.
- Real numbers and imaginary numbers can be combined to create the complex number system.
- A complex number contains two parts: a real part and an imaginary part.

Identify the real and imaginary parts of the complex number $8 + \frac{1}{3}i$.

real: 8 imaginary: 3i

Rewrite the complex number 2i using a radical.

Rewrite the radical $\sqrt{-32}$ using the imaginary unit *i*.

Example 4

Simplify i⁵⁷. 1 4 457

Impedance, Z, is the measure of a circuit's opposition to the flow of current. Complex numbers are used to represent the impedance of a circuit. The resistance, R, is the real part of the impedance, and the reactance, X, is the coefficient of the imaginary unit i. So, impedance is R + Xi, where R and X are both measured in ohms. A certain circuit has a resistance of 18 ohms and a reactance of 2 ohms. Use a complex number to represent the circuit's impedance.

R+Xi
18+2i

Mini Group Project!

- You have two things to complete as a group today:
- 1. Student Activity Worksheet (front and back). Answers are at the front.
- 2. Visual Poster "i is..."
- Roles: Fact Checker, Supplies Picker, Presenter, Cleaner

Expectations:

- Work in groups of 3-4.
- Music volunme > Talking volume.
- 40 minutes.

1.) i+6i x+6x =7i 7x2.) 3+4+6i 1(6)(4-5i)(4+i) $16-5i^2+4i-20i$ 16-5(-1)-16i 16+5-16i 21-16i

15) $7i \cdot 3i(-8 - 6i)$ $21i^{2}(-8 - 6i)$ 21(-1)(-8 - 6i) -21(-8 - 6i)168 + 126i